SMOOTH BORES IN A TWO-LAYER LIQUID WITH A VELOCITY
SHEAR BETWEEN THE LAYERS
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The two-dimensional problem of gravity waves on the interface between two nonviscous immiscible liquids
with different density, confined between horizontal planes (bottom and top), was studied in [1] on the basis of
the second approximation of the theory of shallow water. It was predicted there that there exist stationary
periodic waves, solitary internal waves in the form of a "hump" or "hole," and solitary stationary waves of a
new type, which are characterized by a smooth monotonic transition of the interface from one constant level
to another and are called smooth bores [2]. The parameters of these waves differ from those of other station-
ary transitions of this type: hydraulic jumps [3, 4], wave jump [5], and monoclinal wave [6], obtained based on
the first approximation of shallow-water theory. Smooth bores have not been previously predicted theoretically
and have not been observed experimentally, so that it is of great interest fo study them experimentally.

Waves in the form of a smooth bore in the undisturbed state of a liquid at rest were first realized and
studied in {2]. In this paper the main attention is devoted to the analysis of the behavior of such waves on a
shear flow and accompanying reflection from a vertical wall,

The experiments were performed on two experimental setups, diagrams of which are presented in Fig.
la and b. In the setup a the bottom liquid (water with density p; =1 g/cm3 and viscosity v = 0.0108 cm?/sec)
in the undisturbed state moved with a constant velocity and depth. The top liquid (kerosene with p = 0.8 g/cm3
and v =0.0162 cm?/sec) remained virtually stationary. Only weak circulatory motion, owing to friction against
the interface separating the layers, was observed in it. The total depth of the liquid H =6 cm, and the working
part of the setup is 250 cm long and 18 cm wide.

Waves were generated by the barrier 1, situated at the outlet from the working region of the setup and in
the starting state extending above the bottom of the channel to a height by (Fig. 1a). After stationary flow of
the bottom liquid with a velocity u; and depth h; was established in the channel the barrier rapidly moved up
to the height b, upwards (accompanied by generation of waves of a rise in level) or downwards (accompanied
by generation of waves of a lowering of the level). At the same time a disturbance, which can transform into
a smooth bore only for a definite value of the depth h, uniquely related with by, propagates upstream along the
flow.

The waves realized in the experiments were compared with the predictions of the theory according to
four indications. The first was the fact that with an insignificant deviation from the value of h, indicated by the
model of [1] the wave generated either is appreciably unsymmetric or it is nonmonotonic: sign-alternating
waves, typical for a wave-jump, appear on the interface. The second indication was the independence of the
velocity of propagation of the smooth bore v from its amplitude h, —h;. Two more indications were obtained
by a direct comparison of the experimental and computed data on the velocity and profile of the wave,

In the experiments these data were obtained by two electrical conductivity probes 2 (Fig. 1), placed at a
distance x; and X, + Ax from the wave generator. The principle of conversion of the oscillations of the inter-
face into an electric signal is based here on the fact that slightly saline water is a good conductor, while kero-
sene is a good dielectric. The conversion was linear and satisfied the necessary requirements imposed on the
sensitivity and space —time resolution. More detailed information about the probes is given in [7].

The velocity of propagation of the wave v was determined from the transit time of a characteristic point
hy = (h; + hy) /2 on the wave profile over a distance Ax. Repeated measurements under the same conditions
showed that the error in the measurement of v did not exceed 3%. Here the function h(z, t) (t is the time) is
called the wave profile. For a stationary wave h(x, t) =h(x + vt), which makes it possible to convert the de-
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Fig. 1

pendence h(t), obtained with the help of a stationary probe and giving information about its variation at a fixed
point x, into the dependence h(x), which would be observed in a coordinate system moving together with the wave.
The experimental data presented below are presented previously in this form.

The second setup (see Fig. 1b) was used to study the behavior of the smooth bore as it is reflected from
a vertical side wall. It consisted of a channel, closed at the ends, 192 cm long, 20 cm wide, and 6 cm high,
separated by an impenetrable barrier 1 into two equal parts. In the undisturbed state both fluids were at rest.
To generate waves a level drop Ah = 2(hy —h,) was created at the barrier. The barrier was quickly removed,
and smooth bores propagated on both sides of it (rising of the level to the left and lowering of the level to the
right). A strictly determined depth of the bottom liquid after passage of the smooth bore hy, = H/(1 +V)
was predicted in {1] for a fixed depth H and density ratio A =p /p ;+ By varying Ah in order to find waves with
different amplitude h; must also be varied in a corresponding manner.

Under the conditions of the experiments of [1] we obtain the following expressions for the depth of the
bottom liquid behind the bore y, =h,/H and its velocity V = v/(gH) 1/2 (g is the acceleration of gravity):
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where F; =u,/(gH) % 2 u =1-). The profile of the wave in [1] can be found approximately by solving the
starting differential equation and is given by the formula
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Here x, = x/H; y =h/H; y, =h;/H; k is a parameter which depends on y; and y,. Computer calculations of
the wave profile showed that (2) is virtually identical to its exact expression, so that the calculations carried
out based on (1) and (2) are compared with the experimental data.

When both liquids are initially at rest F; =0 (Fig. 1b), the depth of the bottom liquid after the passage of
the wave and its velocity are determined by the formulas

Y2 =11 VR, V=—Vpl(t + V.

This smooth bore gives rise to a shear flow with velocities Fy = [(y, ~ ¥)/¥,IV, F§ =—{(y; —y)/(1 — yy) IV of
the bottom and top liquids, respectively [Fy = uy/ (gH) /2, F¥ =uf/(gH) 1/ %], The reflected wave now moves
along such a shear flow, and if it remains a smooth bore, we obtain y; = 2y, ~ ¥y, and V' =—V for the depth of
the liquid behind it y5 =h}/H and its velocity V' = v'/(gH) 1/2 from [1]. The profile of the reflected wave is de-
scribed by the expression (2), in which y, must be replaced by y; and y, by y, (including also in the expression
for k).

We were able to match the conditions for carrying out the calculations and the experimental conditions
with respect to all parameters of the problem, except for the viscosity of the liquid and the surface tension at
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the interface. The surface tension has virtually no eifect on long waves and at the same time plays an import-
ant positive role [2, 8]. The viscosity leads to the fact that in the experiments the depth of the bottom liquid
behind the smooth bore h, changes slowly. Therefore the theoretical solution is realized, strictly speaking, at
one moment in time and the experimental value of h, does not exactly coincide with the theoretical value in all
illustrations presented below. But if the experimental value of this depth is used in the calculations, then (2)
describes well the wave profile. In calculating all the presented theoretical profiles of smooth bores it is pre-
cisely the experimental value h, that was employed.

Information about the evolution of a smooth bore in a viscous liquid is contained in Fig. 2, which shows one
and the same wave of rising level propagating to the left. Here and in the remaining figures the origin of the
coordinates on the x axis is positioned at a point at which y = (y, + y,)/2; the lines show the calculation based
on the formula (2) and the dots show the experimental data. For a depth and velocity of the incident flow V=
0.475 and Fy = 0.154, we obtain for the depth of the bottom liquid after passage of the wave and its velocity from
{i) y;, =0.685 and V =—0.153. In the experiment the velocity of propagation was the same as the depth of the
bottom liquid 0.683 and 0.671 at a distance x;/H =13.3 (the curve 1 and the black-colored points} and (x;+4Ax)/H=
17.5 {the curve 2 and the light-colored points), respectively.

Figure 3 shows two smooth bores of rising level in the presence of an initial velocity shear between the
layers. The probe from which the experimental data were obtained lies at a distance X, /H =13.3 from the
wave generator. Curve 2 and the black points were obtained for y; = 0.475 and ¥, = 0.154, the theory gives y, =
6.685 and V =—0.153, and experiment gives 0.683 and—0.153, respectively; thecurve 1 and the light-colored
points were obtained for y; = 0.583 and ¥, = 0.188, the theory gives y, = 0.729 and V =—0.138, while experiment
gives 0.727 and —0.137.

Figure 4 compares the experimental and computed parameters of the incident and reflected waves. The
tracing was obtained from the same probe, lying at a distance Xg/H =12 from the barrier. The velocity of
propagation of the wave in the experiment was calculated from the time required for it to traverse the distance
from the probe to the wall and back. Curve 2 and the black points refer to the incident wave, propagating to the
left, and curve 1 and the light-colored points refer to the reflected wave, moving to the right. Here y, = 0.280;
the theory gives y, = 0.528, y} = 0.776, | V| = 0.236, and experiment gives 0.522; 0.756; 0.230, respectively.

The amplitude of the smooth bores generated in the experiments cannot be too high, since they generate
a velocity shear between the layers which increases as the amplitude of the wave increases. In the absence
of surface tension any shear flow is unstable. Under the conditions of the experiments the surface tension at
the interface (c = 34 dynes/cm) suppressed the appearance of the Kelvin—Helmholtz instability to a velocity
difference of 19 cm/sec [8]. From [1] we obtain in dimensionless form for the velocity shear arising between
the layers
Au = Ve (#—w) V{?ﬁ

A+Vaya(1—1y)

(3)

For a sufficiently large amplitude of the smooth bore the velocity shear behind it will be greater than the criti-
cal shear and an instability will develop.

Figure 5 shows the tracing of a smooth bore, recorded on an automatic plotter, of rising level, propagating
to the left, for A =0.8, H =6 cm. At the same time, according to (3), the velocity shear which appears Au =
23.3 cm/sec is greater than its limiting value. Short-wavelength disturbances, characteristic for the Kelvin—
Helmbholtz instability, are visible behind the smooth bore.
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In conclusion we point out that in hydrodynamics it is rarely possible to obtain analytical solutions and

to realize simultaneously the physical process agreeing with these solutions with the accuracy illustrated by
the experimental data presented above.

I thank L. V. Ovsyannikov and V. I. Bukreev for his initiative in providing the experimental data and a

useful discussion of the results obtained.
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